Article

First Asymmetric Synthesis of 6-Hydroxy-4-Sphingenine-Containing Ceramides. Use of Chiral Propargylic Alcohols To Prepare a Lipid Found in Human Skin

Jiong Chun, Hoe-Sup Byun, and Robert Bittman*

Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597

robert_bittman@qc.edu

Received July 25, 2002

6-Hydroxy-(4*E*)-sphingenine-containing ceramides were found recently in human skin. We present here the first synthesis of the 6*S* and 6*R* diastereoisomers **2** and **3**, which represent analogues of (2*S*,3*R*)-ceramide (**1**) having two allylic hydroxyl groups. Chiral propargylic alcohols **8** and **11**, which were prepared by asymmetric dihydroxylation of α,β -unsaturated ester **13** and allylic chloride **22**, respectively, were employed as precursors of **2** and **3**. Nucleophilic addition of lithiated TBS-protected propargylic ethers **25** and **32** to L-serine-derived aldehyde **26**, respectively, afforded oxazolidine intermediates **27** and **33**. Acid-mediated deprotection of the oxazolidine, followed by *N*-acylation and Birch reduction, completed the syntheses of **2** and **3**.

Introduction

Ceramides (N-acylsphingosines) were reported to occur in human epidermis in 1975,¹ and ceramide (1) has since been discovered to be a potent lipid mediator of many cellular functions, including proliferation, differentiation, and apoptosis.² The role of ceramides in skin function, particularly in the regulation of the water content of the epidermis,³ has led to the development of synthetic "pseudoceramides" as ceramide replacements in the cosmetic industry.⁴ The sphingolipids in stratum corneum are structurally heterogeneous. A substantial proportion of skin ceramides are hydroxylated at various positions of the sphingoid base or at the α and ω positions of the *N*-linked fatty acyl chain.⁵ A novel sphingoid base, (6*R*/6*S*)-6-hydroxy-(4*E*)-sphingenine, with predominately 18 and 20 carbon atoms, was identified in the ceramide fraction of human stratum corneum; ~25% of these ceramides bear ω -hydroxy fatty acids,6a-c and ~9% have nonhydroxylated fatty acids.^{6d} We report here

(d) (a) Suzuki, T. *Fragrance J.* 1993, *21*, 23–33. (b) Mizushima, H.;
Fukasawa, J.; Suzuki, T. *J. Colloid Interface Sci.* 1997, *195*, 156–163. (c) Möller, H. The Chemistry of Natural and Synthetic Skin Barrier Lipids. *Cosmet. Sci. Technol. Ser.* 2002, *24*, 1–35.

(5) Koller, T.; Sandhoff, K. *Angew. Chem., Int. Ed.* **1999**, *38*, 1532–1568.

CHART 1. (2*S*,3*R*)-Ceramide (1), 2-Octanoylamido-(2*S*,3*R*,6*S*)-6-hydroxy-(4*E*)-sphingenine (2), and 2-Octanoylamido-(2*S*,3*R*,6*R*)-6-hydroxy-(4*E*)sphingenine (3)

the first asymmetric synthesis of these diastereomeric ceramides of human stratum corneum. The amide chain of skin ceramides often contains as many as 30 carbons;⁵ however, for ease of handling, we synthesized model ceramides **2** and **3** with an *N*-octanoyl chain (see Chart 1). The synthetic route to **2** and **3** described here can be applied to the preparation of other 6-hydroxy-substituted ceramides bearing longer *N*-acyl chains, thereby affording homogeneous stratum corneum sphingolipids for biophysical investigations.

Results and Discussion

Synthetic Plan. As outlined in Scheme 1, our strategy for the preparation of ceramide **2** involves the key oxazolidine intermediate **27**, which is obtained by the addition of the acetylide ion derived from propargylic alcohol **11** to *N*-Boc-*N*,*O*-isopropylidene-L-serinal ((*S*)-

^{*} To whom correspondence should be addressed. Phone: (718) 997-3279. Fax: (718) 997-3349.

^{(1) (}a) Gray, G. M.; Yardly, H. *J. Lipid Res.* **1975**, *16*, 434–440. (b) Gray, G. M.; Yardly, H. *J. Lipid Res.* **1975**, *16*, 441–447.

⁽²⁾ For reviews of ceramide biochemistry, see: (a) Perry, D. K.;
(2) For reviews of ceramide biochemistry, see: (a) Perry, D. K.;
Hannun, Y. A. *Biochim. Biophys. Acta* **1998**, *1436*, 233–243. (b)
Kolesnick, R. N.; Goni, F. M.; Alonso, A. J. Cell Physiol. **2000**, *184*, 285–300. (c) Hannun, Y. A.; Obeid, L. M. J. Biol. Chem. **2002**, *277*, 25847–25850.

⁽³⁾ Together with other lipids (primarily cholesterol and free fatty acids) in a multilamellar matrix with a complex phase behavior, ceramides are involved in providing skin with its barrier properties and water-binding capacity: Downing, D. T.; Stewart, M. E.; Wertz, P. W. J. Invest. Dermatol. **1987**. *88*. 2s-6s.

^{(6) (}a) Robson, K. J.; Stewart, M. E.; Michelsen, S.; Lazo, N. D.; Downing, D. T. *J. Lipid Res.* **1994**, *35*, 2060–2068. (b) Stewart, M. E.; Downing, D. T. *J. Invest. Dermatol.* **1995**, *105*, 613–618. (c) Bouwstra, J. A.; Gooris, G. S.; Dubbelaar, F. E. R.; Ponec, M. *J. Lipid Res.* **2001**, *42*, 1759–1770. (d) Stewart, M. E.; Downing, D. T. *J. Lipid Res.* **1999**, *40*, 1434–1439.

SCHEME 1. Retrosynthetic Plan

Garner aldehyde, **26**).⁷ Similarly, diastereomer **3** arises via intermediate **33**, which is obtained by the reaction of the acetylide ion derived from **8** with aldehyde **26**. Thus, the success of this synthetic plan depends on the ability to prepare long-chain propargylic alcohols (*R*)-**8** and (*S*)-**11** in high enantiomeric purity (see below).

Synthesis of Chiral Propargylic Alcohols. Chiral propargylic alcohols are important synthons. They have been prepared by many methods, e.g., addition of an organometallic compound to an acetylenic aldehyde in the presence of chiral ligands,⁸ enantioselective aldol addition to an α,β -ynal,⁹ asymmetric reduction of an α,β -ynone,¹⁰ resolution via enzymatic techniques,¹¹ Sharpless asymmetric epoxidation of an allylic alcohol,¹² and asymmetric dihydroxylation (AD) of an allylic chloride.¹³

Attempted Enantioselective Reduction of Ynones 6 and 10 (Scheme 2). We first examined whether the enantioenriched propargylic alcohols 8 and 11 could be prepared by asymmetric reduction of α,β ynones 6 and 10 (Scheme 2). Treatment of trimethylsilylacetylene with *n*-BuLi in THF at -78 °C followed by reaction with tridecanal 4 provided alcohol 5 in 92% yield. PCC oxidation of 5 afforded α,β -ynone 6 in 88% yield. Asymmetric reduction of ynone 6 with LiAlH₄ in diethyl ether in the presence of Darvon alcohol (Chirald)^{10,14} gave alcohol 7, but the resulting ee¹⁵ was low (43%). As

(10) (a) Cohen, N.; Lopresti, R. J.; Neukom, C.; Saucy, G. J. Org. Chem. **1980**, 45, 582–588. (b) Marshall, J. A.; Wang, X.-J. J. Org. Chem. **1991**, 56, 4913–4918.

(11) (a) Takano, S.; Setoh, M.; Yamada, O.; Ogasawara, K. *Synthesis* **1993**, *12*, 1253–1256. (b) Waldinger, C.; Schneider, M.; Botta, M.;

Corelli, F.; Summa, V. *Tetrahedron: Asymmetry* **1996**, *7*, 1485–1488. (12) Takano, S.; Samizu, K.; Sugihara, T.; Ogasawara, K. J. Chem. Soc., Chem. Commun. **1989**, 1344–1345.

(13) Takano, S.; Yoshimitsu, T.; Ogasawara, K. Synlett 1994, 119-120.

(14) Chirald is a trademark for Darvon alcohol. Propargylic ketones with a short-chain alkyl group were reduced with Chirald–LiAlH₄ to provide chiral alcohols in high ee;^{10b} however, the enantiomeric purity was decreased when a long-chain alkyl group was present.

was decreased when a long-chain alkyl group was present. (15) The % ee was determined by ¹H and ¹⁹F NMR analysis of the Mosher ester formed by the reaction of the alcohol with (*S*)-(+)- α -methoxy- α -(trifluoromethyl)phenylacetic acid (MTPA) chloride in the presence of DMAP: Guivisdalsky, P. N.; Bittman, R. *J. Org. Chem.* **1989**, *54*, 4637–4642.

^{*a*} Reagents and conditions: (a) PCC, CH₂Cl₂, rt; (b) LiAlH₄, Chirald, Et₂O, -78 °C; (c) K₂CO₃, MeOH, rt; (d) (*R*)-Alpine-Borane, 0 °C to rt.

SCHEME 3. Synthesis of Propargylic Alcohol (*R*)-8^{*a*}

^{*a*} Reagents and conditions: (a) $(i \cdot PrO)_2P(O)CH_2CO_2Et$ (**12**), Et₃N, LiBr, THF, rt; (b) AD-mix- β , MeSO₂NH₂, *t*-BuOH/H₂O (1:1), rt; (c) Me₂C(OMe)₂, *p*-TsOH, CH₂Cl₂, rt; (d) DIBAL-H, THF, 0 °C; (e) NCS, Ph₃P, CH₂Cl₂, 0 °C to rt; (f) *n*-BuLi, HMPA, THF, -42 °C to rt.

shown in Scheme 2, analogous treatment of ynone **10**, obtained by removal of the TBS group of **5** and PCC oxidation of the resulting alcohol **9**, also provided **8** in poor enantiomeric purity (40%). Similarly, reduction of ynone **10** with *B*-(3-pinanyl)-9-borabicyclo[3.3.1]nonane ((R)-Alpine-Borane)¹⁶ gave moderate enantioselectivity (78% ee).

Therefore, we examined alternative routes for the preparation of chiral propargylic alcohols **8** and **11**. As outlined in Schemes 3 and 4, the routes we chose involve the AD reaction with an α , β -unsaturated ester¹⁷ or an allylic chloride,¹³ and conversion of the resultant diol to a 4-(chloromethyl)-1,3-dioxolane, followed by a double elimination reaction.

Synthesis of 8 via AD Reaction of α,β -Unsaturated Ester 13. On base-mediated double elimination, chloromethyl-1,3-dioxolanes (+)-17 (Scheme 3) and (-)-24 (Scheme 4) afforded alcohols 8 and 11, respectively. α,β -Unsaturated ester 13 was prepared by Horner– Wadsworth–Emmons (HWE) reaction of tridecanal 4

⁽⁷⁾ For a review of the applications of the Garner aldehyde, see: Liang, X.; Andersch, J.; Bols, M. *J. Chem. Soc., Perkin Trans.* **1 2001**, 2136–2157.

^{(8) (}a) Weber, B.; Seebach, D. *Tetrahedron* 1994, *50*, 7473–7484.
(b) BouzBouz, S.; Pradaux, F.; Cossy, J.; Ferroud, C.; Falguieres, A. *Tetrahedron Lett.* 2000, *41*, 8877–8880. (c) Lu, G.; Li, X.; Zhou, Z.; Chan, W. L.; Chan, A. S. C. *Tetrahedron: Asymmetry* 2001, *12*, 2147–2152.

⁽⁹⁾ Singer, R. A.; Shepard, M. S.; Carreira, E. M. *Tetrahedron* **1998**, *54*, 7025–7032.

⁽¹⁶⁾ Alpine-Borane is a trademark of Aldrich Chemical Co. For the preparation of (*R*)-Alpine-Borane and its use in the asymmetric reduction of 1-octyn-3-one, see: (a) Midland, M. M.; Graham, R. S. *Org. Synth.* **1985**, *63*, 57–65. (b) For a review of asymmetric reduction of propargyl ketones with Alpine-Borane, see: Midland, M. M.; Tramontano, A.; Kazubski, A.; Graham, R. S.; Tsai, D. J. S.; Cardin, D. B. *Tetrahedron* **1984**, *40*, 1371–1380.

^{(17) (}a) Kwong, H.; Sorato, C.; Ogino, Y.; Chen, H.; Sharpless, K. B. *Tetrahedron Lett.* **1990**, *31*, 2999–3002. (b) Kolb, H. C.; Van-Nieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483–2547.

SCHEME 4. Synthesis of Propargylic Alcohol (S)-11^a

^{*a*} Reagents and conditions: (a) Li, NH₃, Fe(NO₃)₃, C₁₂H₂₅Br (**19**), THF, -78 °C; (b) LiAlH₄, THF, reflux; (c) NCS, Ph₃P, CH₂Cl₂, 0 °C to rt; (d) AD-mix- α , NaHCO₃, MeSO₂NH₂, *t*-BuOH/H₂O (1:1), 0 °C; (e) Me₂C(OMe)₂, *p*-TsOH, CH₂Cl₂, rt; (f) *n*-BuLi, HMPA, THF, -42 °C to rt.

with diisopropyl ester phosphonate **12** (Scheme 3).¹⁸ Reaction of **13** with AD-mix- β provided diol ester **14** in 90% yield and 96% ee. This result is consistent with previous reports of very high ee values attained in AD reactions of α,β -unsaturated esters.^{17b} Treatment of diol **14** with 2,2-dimethoxypropane in the presence of *p*-TsOH gave acetonide ester **15**, which on reduction with DIBAL-H gave alcohol **16**. During the acetonide formation, a trace of the methyl ester analogue of **15** was formed by transesterification. However, subsequent reduction provided the same alcohol **16**. The latter was converted to chloride **17** in **88**% yield by Mitsunobu reaction.¹⁹ Propargylic alcohol (*R*)-**8** was obtained in good yield and high ee²⁰ by treatment of **17** with excess *n*-BuLi and HMPA in THF at low temperature.

Synthesis of 11 via Allylic Chloride 22 (Scheme 4). Takano et al. prepared short-chain propargylic alcohols from allylic chlorides.¹³ We applied this method to the preparation of long-chain alcohol 11. Thus, alkylation of propargyl alcohol (18) with dodecyl bromide (19) in THF^{22a} gave propargylic alcohol 20 in 95% yield (Scheme 4). The latter was converted to (*E*)-allylic alcohol 21 in 96% yield by LiAlH₄ reduction²³ and then to chloride 22 in 88% yield by Mitsunobu reaction of 21. Reaction of 22 with AD-mix- α^{23} provided diol 23²⁴ in 88% yield and 93% ee. To minimize epoxide formation, the AD reaction was carried out under "buffered" conditions (with 3 equiv of

SCHEME 5. Synthesis of Ceramide Analogue 2^a

^a Reagents and conditions: (a) TBSCl, imidazole, DMF, rt; (b) *n*-BuLi, THF, -78 °C to rt; (c) *n*-Bu₄NF, THF, rt; (d) (i) Li, EtNH₂, -78 °C, (ii) 1 M HCl, dioxane, 100 °C, (iii) *p*-O₂NC₆H₄CO₂C₇H₁₅-*n*, THF, rt; (e) (i) 1 M HCl, dioxane, 100 °C, (ii) *p*-O₂NC₆H₄CO₂C₇H₁₅-*n*, THF, rt; (f) Li, EtNH₂, -78 °C.

NaHCO₃).²⁵ Treatment of diol **23** with 2,2-dimethoxypropane in the presence of *p*-TsOH gave acetonide **24**, which was treated with excess *n*-BuLi in the presence of HMPA to provide alcohol (*S*)-**11** in 80% yield (93% ee).

Synthesis of Ceramide Analogue 2 (Scheme 5). Coupling of protected propargylic alcohols 8 and 11 with (S)-aldehyde **26**^{7,26} led to ceramide analogues **2** and **3**. The C-2 and C-6 configurations in 2 and 3 are derived from the stereogenic centers in serinaldehyde 26 and the propargylic alcohols, respectively. The new stereocenter at C-3 is generated by the asymmetric addition of the lithium acetylide of 25 or 32 to the Boc-protected aldehyde. As shown in Scheme 5, protection of the hydroxy group of 11 (TBSCl, Im) gave ether 25, which was lithiated (n-BuLi, THF, -78 °C) and reacted with aldehyde 26 to give an 8:1 mixture of erythro-27 and threo-**28** in 80% overall yield.²⁷ The diastereoselectivity was improved significantly (ratio > 20:1) by the addition of 2 equiv of HMPA.²⁸ After diastereomers 27 and 28 were separated by chromatography, the TBS group of 27 was removed by treatment with *n*-Bu₄NF in THF to give diol **29**, and Birch reduction was used to convert the triple bond to a trans double bond. Acid hydrolysis (1 M HCl in dioxane, 100 °C) followed by N-acylation with p-nitrophenyl octanoate provided target ceramide analogue 2

⁽¹⁸⁾ Bonini, C.; Federici, C.; Rossi, L.; Righi, G. J. Org. Chem. **1995**, 60, 4803–4812.

⁽¹⁹⁾ For a review of the Mitsunobu reaction, see: Hughes, D. L. Org. React. **1992**, *42*, 335–656.

⁽²⁰⁾ For a preliminary account of the preparation of both *R* and *S* long-chain propargylic alcohols in high ee via AD reaction of α , β -unsaturated esters with either AD-mix- α or AD-mix- β , see: Chun, J.; Byun, H.-S.; Bittman, R. *Tetrahedron Lett.* **2002**, *43*, 8043–8045.

⁽²¹⁾ Takano, S.; Sugihara, T.; Ogasawara, K.*Heterocycles* **1990**, *31*, 1721–1725.

^{(22) (}a) van Aar, M. P. M.; Thijs, L.; Zwanenburg, B. *Tetrahedron* **1995**, *51*, 11223–11234. (b) Oppolzer, W.; Radinov, R. N.; El-Sayed, E. J. Org. Chem. **2001**, *66*, 4766–4770.

E. J. Org. Chem. 2001, 66, 4766–4770.
 (23) Zhang, Z.-B.; Wang, Z.-M.; Wang, Y.-X.; Liu, H.-Q.; Lei, G.-X.;
 Shi, M. J. Chem. Soc., Perkin Trans. 1 2000, 53–57.
 (24) Zhang et al.²³ assigned the 2*S*,3*S* configuration to compound

⁽²⁴⁾ Zhang et al.²³ assigned the 2*S*,3*S* configuration to compound **23**; however, it should be 2*R*,3*S*. Moreover, because of the discrepancy between the mp and [α] values and those of ref 23, we prepared the enantiomer of **23**, (2*S*,3*R*)-1-chloropentadecane-2,3-diol, by the reaction of **22** with AD-mix- β , and found no change in mp (64.5–65.5 °C) and the same magnitude of specific rotation but opposite sign ([α]²⁵_D +8.9° (*c* 1.0, MeOH)).

⁽²⁵⁾ For the "buffered" AD reaction of allylic halides, see: Vanhessche, K. P. M.; Wang, Z.-M.; Sharpless, K. B. *Tetrahedron Lett.* **1994**, *35*, 3469–3472.

^{(26) (}a) Garner, P.; Park, J. M.; Malecki, E. J. Org. Chem. 1988, 53, 4395–4398. (b) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361–2364. (c) Garner, P.; Park, J. M. Org. Synth. 1991, 70, 18–27.

⁽²⁷⁾ The ratio of **27** to **28** was estimated by high-temperature ¹H NMR spectroscopy.

⁽²⁸⁾ For examples of high *anti:syn* ratios in the addition of alkynyllithium reagents to **26** in the presence of HMPA, see: (a) Herold, P. *Helv. Chim. Acta* **1988**, *71*, 354–362. (b) Gruza, H.; Kiciak, K.; Krasinski, A.; Jurczak, J. *Tetrahedron: Asymmetry* **1997**, *8*, 2627– 2631.

SCHEME 6. Synthesis of Ceramide Analogue 3^a

^{*a*} Reagents and conditions: (a) TBSCl, imidazole, DMF, rt; (b) *n*-BuLi, HMPA, THF, -78 °C to rt; (c) (i) 1 M HCl, dioxane, 100 °C, (ii) *p*-O₂NC₆H₄CO₂C₇H₁₅-*n*, THF, rt; (d) Li, EtNH₂, -78 °C.

(route a). Unexpectedly, we found the yield of **2** to be only 42%; about 20% byproduct **30** was also formed. A much better result (route b) was obtained when we changed the sequence of these reactions: acid hydrolysis of **27** followed by *N*-acylation provided 4-alkynylceramide analogue **31**. In the last step, Birch reduction of **31** (Li, EtNH₂, THF, -78 °C) gave ceramide analogue **2** in 90% yield.

Synthesis of Ceramide Analogue 3 (Scheme 6). Protection of the hydroxy group of **8** as the TBS ether followed by lithiation (*n*-BuLi, THF, -78 °C) and reaction with aldehyde **26** in the presence of HMPA afforded **33** in 78% yield (Scheme 6). Acid hydrolysis (1 M HCl in dioxane, 100 °C) of **33** followed by *N*-acylation with *p*-nitrophenyl octanoate afforded 4-alkynylceramide analogue **34**, which on Birch reduction provided ceramide analogue **3** in 88% yield.

In summary, we have reported the first synthesis of naturally occurring sphingolipids with the 6(R/S)-hydroxysphing-(4*E*)-enine backbone, a novel long-chain base bearing allylic hydroxy groups at C-3 and C-6. The key precursors were the propargylic alcohols **8** and **11**, which were prepared by AD reactions with α , β -unsaturated ester **13** and allylic chloride **22**, respectively, followed by acetonide formation and elimination. The target ceramide analogues **2** and **3** were obtained with high stereoselectivity and good yields.

Experimental Section

General Information. See the previous paper for general experimental details.²⁹ (*S*)-Garner aldehyde (**26**) was prepared from *N*-Boc-L-serine methyl ester as described previously.^{26b,c} Mosher esters were prepared as described previously.¹⁵ ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively. The solvent was CDCl₃ unless otherwise noted. IR spectra were recorded in chloroform. The mobile phase used in electrospray mass spectrometry contained ~50 μ M NH₄OAc and 0.1% HOAc.

rac-1-(Trimethylsilyl)pentadecyn-3-ol (5). To a solution of 0.43 mL (3.0 mmol) of (trimethylsilyl)acetylene in 15 mL of dry THF was added 1.3 mL (3.2 mmol) of *n*-BuLi (2.5 M solution in hexanes) at -78 °C under N₂. After 30 min, a solution of 0.48 g (2.8 mmol) of tridecanal (4) in 10 mL of THF was added dropwise. After the mixture was stirred for 2 h at

-78 °C and for 1 h at rt, the reaction was quenched by the addition of aqueous saturated NH₄Cl solution. The product was extracted with EtOAc (3 \times 30 mL), dried (Na₂SO₄), and concentrated under reduced pressure. Pentadecynyl alcohol **5** (0.77 g, 92%) was obtained by chromatography on silica gel (hexane/EtOAc, 9:1): IR 3597, 3302, 2169 cm⁻¹; ¹H NMR δ 0.14 (br s, 9H), 0.84 (t, 3H, J = 6.7 Hz), 1.10–1.50 (m, 20H), 1.64 (m, 2H), 2.12 (br s, 1H), 4.31 (t, 1H, J = 6.6 Hz); ¹³C NMR δ –0.2, 14.1, 22.6, 22.7, 25.1, 27.8, 29.2, 29.3, 29.5, 29.61, 29.64, 31.9, 37.1, 37.6, 62.8, 89.1, 107.1; HR-MS [DCI/NH₃, MNH₄⁺] m/z calcd for C₁₈H₁₄NOSi 314.1879, found 314.1879.

1-(Trimethylsilyl)pentadecyn-3-one (6). To a solution of 0.30 g (1.0 mmol) of **5** in 10 mL of CH_2Cl_2 was added 0.43 g (2.0 mmol) of PCC. The mixture was stirred at rt for 5 h and then filtered through a pad of silica gel, which was washed with CH_2Cl_2 . The filtrate was concentrated to give a residue that was purified by flash chromatography (hexane/EtOAc, 9:1), affording 0.26 g (88%) of ynone **6**: IR 2172, 1665, 1256 cm⁻¹; ¹H NMR δ 0.16 (s, 9H), 0.82 (t, 3H, J = 6.6 Hz), 1.10–1.60 (m, 18H), 1.57 (m, 2H), 2.46 (t, 1H, J = 7.4 Hz); ¹³C NMR δ –0.9, 14.0, 22.2, 22.6, 22.7, 23.7, 23.8, 28.8, 29.1, 29.2, 29.3, 29.4, 29.51, 29.52, 31.8, 42.3, 42.6, 45.1, 97.1, 102.0, 187.6; MS [ESI] *m*/*z* 295.2 (M⁺), 312.2 (MNH₄⁺), 317.1 (MNa⁺).

1-(Trimethylsilyl)pentadecyn-3-ol (7). To a solution of Chirald (1.70 g, 6.0 mmol) in 10 mL of dry Et₂O was added dropwise 2.8 mL (2.8 mmol) of LiAlH₄ (a 1.0 M solution in Et₂O) at 0 °C. After being stirred for 5 min, the mixture was chilled to -78 °C, and a solution of ketone **6** (590 mg, 2.0 mmol) in 10 mL of Et₂O was added over a 15 min period. The mixture was stirred at -78 °C for 6 h. Saturated aqueous NH₄Cl solution was added to quench the reaction. The product was extracted with EtOAc (3 × 30 mL), and the combined organic layers were washed with brine (20 mL), dried (Na₂SO₄), and concentrated. Purification of the residue by column chromatography (hexane/EtOAc, 4:1) gave 275 mg (93%) of **7** as a colorless oil: IR 3597, 2158 cm⁻¹; MS [ESI] *m*/*z* 314.2 (MNH₄⁺), 319.2 (MNa⁺).

rac-1-Pentadecyn-3-ol (9). A mixture of 0.60 g (2.0 mmol) of TMS acetylide **5** and 0.62 g (4.6 mmol) of K_2CO_3 in 4 mL of MeOH was stirred at rt for 4 h. After the solvent was removed, the residue was dissolved in 30 mL of Et_2O , washed with water, and dried (MgSO₄). Concentration and purification of the residue by column chromatography (hexane/EtOAc, 9:1) gave 0.40 g (90%) of **9** as a white solid: mp 44.0–45.0 °C; IR 3597, 3302, 1457 cm⁻¹; ¹H NMR δ 0.84 (t, 3H, J = 6.6 Hz), 1.20–1.60 (m, 20H), 1.68 (m, 2H), 2.31 (br s, 1H), 2.42 (d, 1H, J = 3.7 Hz), 4.32 (dt, 1H, J = 6.7, 2.1 Hz); ¹³C NMR δ 14.1, 22.6, 25.1, 29.3, 29.5, 29.62, 29.69, 29.7, 32.0, 37.6, 62.2, 72.7, 85.1; HR-MS [DCI/NH₃, MNH₄⁺] m/z calcd for C₁₅H₃₂NO 242.2484, found 242.2477.

1-Pentadecyn-3-one (10). This compound was prepared in 88% yield by using the same procedure as described for **6**: IR 3291, 2093, 1681 cm⁻¹; ¹H NMR δ 0.82 (t, 3H, J = 6.6 Hz), 1.10–1.60 (m, 18H), 1.61 (m, 2H), 2.51 (t, 1H, J = 7.4 Hz), 3.17 (s, 1H); ¹³C NMR δ 14.0, 22.6, 23.7, 28.8, 29.2, 29.3, 29.48, 29.53, 29.54, 31.8, 45.3, 78.2, 81.4, 187.3; HR-MS [DCI/NH₃, MNH₄⁺] *m*/*z* calcd for C₁₅H₃₀NO 240.2327, found 240.2333.

Ethyl (2*E*)-Pentadecenoate (13). To a nitrogen-flushed solution of 10.5 g (122 mmol) of LiBr in 100 mL of dry THF was injected 7.2 mL (7.6 g, 30 mmol) of (i-PrO)₂P(O)CH₂CO₂-Et (12) at rt. After the solution was stirred at rt for 10 min, 6.8 mL (49 mmol) of Et₃N was added, and stirring was continued for 10 min. A solution of 4.3 g (25 mmol) of 4 in 10 mL of dry THF was added. The reaction mixture was stirred vigorously at rt until the full consumption of tridecanal was observed (TLC). The precipitate was removed by passing the reaction mixture through a pad of silica gel in a sintered glass funnel. The pad was washed with hexane/EtOAc (10:1). Concentration gave a pale yellow oil that was purified by column chromatography (hexane/EtOAc, 20:1), providing 6.0 g (90%) of ester 13 as a colorless oil. The NMR data are in full accord with the literature data.¹⁸

⁽²⁹⁾ Chun, J.; He, L.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2002, 67, 2600–2605.

Ethyl (2S,3R)-2,3-Dihydroxypentadecanoate [(+)-14]. To a solution of 14.0 g of AD-mix- β in 200 mL of t-BuOH/H₂O (1:1) that had been stirred vigorously at rt for 30 min was added 950 mg (10.0 mmol) of MeSO₂NH₂. Stirring was continued for 10 min at rt. Then 2.7 g (10.0 mmol) of α,β -unsaturated ester **13** was added. The reaction mixture was stirred vigorously until the disappearance of ester 13 was noted (TLČ). Sodium sulfite (15.0 g, 14.6 mmol) was added to quench the reaction, and stirring was continued for another 30 min. The product was extracted with EtOAc (3×80 mL), and the combined extracts were dried (Na₂SO₄) and concentrated to give a yellow residue. Purification of the residue by column chromatography (hexane/EtOAc, 2:1) gave 2.7 g (90%) of diol ester **14** as a white solid: mp 69.0–70.0 °C; $[\alpha]^{25}_{D}$ +8.3° (c 1.0, CHCl₃); IR 3629, 3019, 2398, 1518, 1425, 1212 cm⁻¹; ¹H NMR δ 0.88 (t, 3H, J = 6.5 Hz), 1.10–1.70 (m, 25H), 3.06 (d, 1H, J = 8.4 Hz), 3.86 (m, 2H), 4.06 (dd, 1H, J = 6.5, 2.3 Hz), 4.24 (q, 2H, J = 7.1 Hz); ¹³C NMR δ 14.15, 14.17, 22.8, 25.9, 29.5, 29.70, 29.72, 29.74, 29.76, 29.8, 32.0, 33.6, 61.8, 72.8, 73.6, 173.8; MS [ESI] m/z 320.2 (MNH₄⁺), 325.2 (MNa⁺).

(4*S*,5*R*)-5-Dodecyl-4-ethoxycarbonyl-2,2-dimethyl-1,3dioxolane (15). To a solution of 2.4 g (8.0 mmol) of diol ester 14 in 60 mL of dry CH_2Cl_2 were added 1.67 g (16.0 mmol) of 2,2-dimethoxypropane and 50 mg (0.26 mmol) of *p*-TsOH at rt. The mixture was stirred at rt for 2 h and then passed through a pad of silica gel in a sintered glass funnel. The pad was washed with 50 mL of CH_2Cl_2 . Concentration gave ester 15 as a colorless oil, which was used without further purification in the subsequent reaction.

(4R,5R)-5-Dodecyl-4-hydroxymethyl-2,2-dimethyl-1,3dioxolane [(+)-16]. To a solution of ester 15 obtained above in 15 mL of dry THF was added dropwise 10.7 mL (16.0 mmol) of DIBAL-H (a 1.5 M solution in toluene) at 0 °C under N₂. The reaction mixture was stirred for 2 h at 0 °C until TLC analysis showed the reaction to be complete. The reaction was quenched by slow addition of 2 mL of MeOH followed by 15 mL of cold 5% aqueous potassium sodium tartrate solution. The product was extracted with EtOAc (3 \times 40 mL), and the combined organic layers were washed with brine (15 mL), dried (Na₂SO₄), and concentrated. Purification of the residue by column chromatography (hexane/EtOAc, 4:1) gave 2.18 g (91%) of **16** as a colorless oil: $[\alpha]^{25}_{D}$ +18.8° (*c* 1.8, CHCl₃); IR 3597, 1463, 1382, 1103 cm⁻¹; ¹H NMR δ 0.88 (t, 3H, J = 6.6Hz), 1.10-1.70 (m, 28H), 2.90 (t, 1H, J = 6.0 Hz), 3.59 (m, 1H), 3.72 (m, 2H), 3.84 (m, 1H); $^{13}\mathrm{C}$ NMR δ 14.1, 22.7, 26.0, 27.1, 27.4, 29.4, 29.58, 29.63, 29.70, 29.73, 29.8, 32.0, 33.2, 62.2, 77.1, 81.8, 108.6; HR-MS [DCI, MH⁺] m/z calcd for C₁₈H₃₇O₃ 301.2743, found 301.2751.

(4*S*,5*R*)-4-Chloromethyl-5-dodecyl-2,2-dimethyl-1,3-dioxolane [(+)-17]. To a solution of 1.74 g (5.8 mmol) of alcohol 16 and 1.83 g (6.9 mmol) of Ph₃P in 30 mL of dry CH₂Cl₂ was added 930 mg (6.9 mmol) of NCS at 0 °C under N₂. The reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to rt, and stirred for 2 h. The mixture was diluted with 100 mL of hexane and passed through a pad of silica gel to remove the precipitate of Ph₃PO. Concentration and purification of the residue by column chromatography (hexane/EtOAc, 9:1) gave 1.59 g (86%) of 17 as a colorless oil: $[\alpha]^{25}_D + 14.2^\circ$ (*c* 0.9, CHCl₃); IR 1464, 1376, 1218, 1098 cm⁻¹; ¹H NMR δ 0.88 (t, 3H, *J* = 6.6 Hz), 1.20–1.70 (m, 28H), 3.58 (d, 2H, *J* = 4.9 Hz), 3.88 (m, 2H); ¹³C NMR δ 14.1, 22.7, 26.0, 27.0, 27.5, 29.4, 29.5, 29.6, 29.7, 32.0, 33.5, 44.4, 79.4, 80.3, 109.1; HR-MS [DCI, MH⁺] *m/z* calcd for C₁₈H₃₆O₂Cl 319.2404, found 319.2407.

(3*R*)-1-Pentadecyn-3-ol [(+)-8]. To a stirred solution of 4.5 mL (26.1 mmol) of HMPA in 20 mL of dry THF was added 10.4 mL (26.1 mmol) of *n*-BuLi (a 2.5 M solution in hexane) at -42 °C under N₂. After 10 min, a solution of 1.19 g (3.73 mmol) of chloride 17 in 10 mL of THF was added dropwise over 5 min. After 0.5 h, the reaction mixture was warmed to rt and stirred for another 0.5 h. Saturated aqueous NH₄Cl solution was added to quench the reaction. The product was extracted with EtOAc (3 × 30 mL), and the combined organic layers were

washed with brine (20 mL), dried (Na₂SO₄), and concentrated. Purification of the residue by column chromatography (hexane/EtOAc, 7:1) gave 668 mg (80%) of **8** as a white solid: mp 40.0–41.0 °C; [α]²⁵_D+2.60° (*c*1.0, CHCl₃); IR 3597, 3302, 1458 cm⁻¹; ¹H NMR δ 0.88 (t, 3H, J = 6.6 Hz), 1.20–1.60 (m, 20H), 1.72 (m, 2H), 2.41 (br s, 1H), 2.44 (d, 1H, J = 3.7 Hz), 4.36 (m, 1H); ¹³C NMR δ 14.1, 22.7, 25.1, 29.3, 29.5, 29.62, 29.69, 29.7, 32.0, 37.6, 62.3, 72.8, 85.1; HR-MS [DCI/NH₃, MNH₄⁺] *m/z* calcd for C₁₅H₃₂NO 242.2484, found 242.2489.

2-Pentadecyn-1-ol (20). This compound was prepared in 95% yield by a slight modification of the procedure of van Aar et al.,^{22a} we used 3 equiv of propargyl alcohol (**18**) rather than 1.5 equiv; mp 44.2–45.2 °C (lit.^{22a} mp 38–41 °C, lit.^{22b} mp 43–45 °C). The NMR data are in full accord with the literature data.^{22a,b}

(2*E*)-Pentadecen-1-ol (21). This compound, which is a lowmelting-point white solid, was prepared in 96% yield as described previously, and the NMR data are in full accord with the literature data.²³

(2*E*)-1-Chloropentadecene (22). To a solution of 5.0 g (22.1 mmol) of alcohol 21 and 7.0 g (26.7 mmol) of Ph₃P in 50 mL of dry CH₂Cl₂ was added 3.3 g (24.4 mmol) of NCS at 0 °C under N₂. The reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to rt, and stirred for 2 h. The mixture was diluted with 150 mL of hexane and passed through a pad of silica gel with suction to remove the precipitate of Ph₃PO. The filtrate was concentrated, and the resulting residue was dissolved in 100 mL of hexane and passed through a pad of silica gel to remove the precipitate of Ph₃PO again. Concentration gave 4.79 g (88%) of allylic chloride 22 as a colorless oil. This compound was used in the next step without further purification.

(2R,3S)-1-Chloropentadecane-2,3-diol [(-)-23]. After a solution of 14.0 g of AD-mix- $\alpha^{23,30}$ in 200 mL of t-BuOH/H₂O (1:1) was stirred vigorously at rt for 30 min, 2.52 g (30.0 mmol) of NaHCO₃ was added. After 15 min, 950 mg (10.0 mmol) of MeSO₂NH₂ was added, and stirring was continued for 10 min at rt. The reaction mixture was chilled to 0 °C, and 2.47 g (10.0 mmol) of allylic chloride 22 was added. The reaction mixture was stirred vigorously for 8 h. Sodium sulfite (15.0 g, 14.6 mmol) was added to quench the reaction, and stirring was continued for another 30 min. The product was extracted with EtOAc (3 \times 80 mL). The combined extracts were dried (Na₂-SO₄) and concentrated to give a yellow solid residue, which was purified by column chromatography (hexane/EtOAc, 2:1), giving 2.45 g (88%) of diol 23 as a white solid: mp 64.5-65.5 °C (lit.²³ mp 92–93 °C); $[\alpha]^{25}_{D}$ –9.6° (*c* 1.25, CHCl₃); $[\alpha]^{25}_{D}$ -8.9° (c 1.0, MeOH) (lit.²³ [α]²⁵_D -7.0° (c 1.0, MeOH)).²⁴ The NMR data are in full accord with the literature data.²³

(4*R*,5.5)-4-Chloromethyl-5-dodecyl-2,2-dimethyl-1,3-dioxolane [(-)-24]. This compound was prepared in 98% yield by using the same procedure as described for 15: $[\alpha]^{25}_{\rm D}$ -10.93° (*c* 2.1, CHCl₃); IR and ¹H and ¹³C NMR spectra essentially identical to those of (+)-17; HR-MS [DCI, MH⁺] *m*/*z* calcd for C₁₈H₃₆O₂Cl 319.2404, found 319.2400.

(3.5)-1-Pentadecyn-3-ol [(–)-11]. This compound was prepared in 80% yield by using the same procedure as described for 8: mp 40.0–41.0 °C; $[\alpha]^{25}_{D}$ –2.59° (*c* 1.0, CHCl₃); IR and ¹H and ¹³C NMR spectra essentially identical to those of (+)-8; HR-MS [DCI, MH⁺] *m*/*z* calcd for C₁₅H₂₉O 225.2218, found 225.2211.

(3.5)-3-(*tert*-Butyldimethylsilyloxy)-1-pentadecyne [(–)-25]. To a solution of 0.45 g (2.0 mmol) of 11 and 0.29 g (4.2 mmol) of imidazole in 4 mL of DMF under N₂ was added 0.33 g (2.2 mmol) of *tert*-butylchlorodimethylsilane. After the solution was stirred at rt overnight, it was diluted with water (5 mL), and the product was extracted with Et₂O (3×20 mL). The combined extracts were washed with brine and water,

⁽³⁰⁾ Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. *J. Org. Chem.* **1992**, *57*, 2768–2771.

dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by chromatography (hexane) to give 0.66 g (97%) of **25** as a colorless oil: $[\alpha]^{25}{}_{\rm D}$ –26.9° (*c* 1.7, CHCl₃); IR 1714, 1463, 1256, 1093, 837 cm⁻¹; ¹H NMR δ 0.10 (s, 3H), 0.13 (s, 3H), 0.89 (m, 12H), 1.20–1.40 (m, 20H), 1.65 (m, 2H), 2.34 (d, 1H, *J* = 2.1 Hz), 4.32 (dt, 1H, *J* = 6.5, 2.1 Hz); ¹³C NMR δ –5.1, –4.5, 14.1, 18.2, 22.7, 25.2, 25.8, 29.3, 29.4, 29.61, 29.64, 29.71, 29.74, 32.0, 38.6, 62.8, 71.8, 85.8; HR-MS [DCI, MH⁺] *m*/*z* calcd for C₂₁H₄₃SiO 339.3083, found 339.3086.

N-tert-Butoxycarbonyl-(4S,1'R,4'S)-4-[4'-(tert-butyldimethylsilyloxy)-1'-hydroxy-2'-hexadecynyl]-2,2-dimethyl-**1,3-oxazolidine** [(-)-27]. To a solution of 1.01 g (3.0 mmol) of alkyne 25 in 15 mL of dry THF was slowly added 1.3 mL (3.2 mmol) of *n*-BuLi (2.5 M solution in hexanes) at -78 °C under N₂. The mixture was stirred for 30 min at -78 °C, and a solution of 0.69 g (3.0 mmol) of 26 in 10 mL of THF was added dropwise with stirring. The mixture was kept at -78°C for 2 h and then allowed to warm to rt for 2 h. The reaction was quenched with saturated aqueous NH₄Cl solution, extracted with EtOAc (3 \times 30 mL), dried (MgSO₄), and concentrated under reduced pressure. The major diastereomer 27 was isolated by chromatography on silica gel (hexane/EtOAc, 4:1): $[\alpha]^{25}_{D} - 41.1^{\circ}$ (c 2.9, CHCl₃); IR 3334, 3012, 1688, 1380, 1256, 1152 cm⁻¹; ¹H NMR (C₆D₆, 70 °C)³¹ δ 0.13 (s, 3H), 0.19 (s, 3H), 0.88 (t, 3H, J = 6.1 Hz), 0.96 (s, 9H), 1.20-1.80 (m, 37H), 3.79(t, 1H, J = 7.5 Hz), 4.00 (br s, 2H), 4.41 (t, 1H, J = 6.1 Hz), 4.70 (br s, 1H); ¹³C NMR (C₆D₆)³² δ -5.2, -4.9, 14.3, 18.1, 18.4, 18.5, 18.7, 23.1, 23.3, 25.7, 25.9, 26.0, 26.3, 28.3, 29.5, 29.7, 29.8, 30.00, 30.05, 30.07, 30.1, 32.3, 38.2, 39.2, (62.0) 63.3, 64.2 (64.6), 67.1, (79.9) 81.7, 83.0 (83.5), 87.6 (88.1), 101.0, (151.7) 154.3; HR-MS [FAB, MH⁺] m/z calcd for C₃₂H₆₂NO₅Si 568.4397, found 568.4366.

Data for the minor diastereomer 28: IR 3597, 3008, 1692, 1398, 1256, 1163, 1092 cm⁻¹; ¹H NMR (C₆D₆, 70 °C) δ 0.14 (s, 3H), 0.20 (s, 3H), 0.88 (t, 3H, J = 6.1 Hz), 0.99 (s, 9H), 1.20–1.80 (m, 37H), 3.26 (br s, 1H), 3.49 (t, 1H, J = 6.4 Hz), 3.83 (dd, 1H, J = 9.5, 6.5 Hz), 4.13 (m, 2H), 4.46 (m, 1H), 4.76 (d, 1H, J = 6.4 Hz); HR-MS [FAB, MNa⁺] m/z calcd for C₃₂H₆₁-NO₅SiNa 590.4217, found 590.4236.

N-tert-Butoxycarbonyl-(4S,1'R,4'S)-4-[1',4'-dihydroxy-2'-hexadecynyl]-2,2-dimethyl-1,3-oxazolidine [(-)-29]. To a solution of 0.47 g (0.82 mmol) of $\boldsymbol{27}$ in 5.0 mL of THF was added 1.64 mL (1.64 mmol) of a 1.0 M solution of *n*-Bu₄NF in THF at rt under N₂. After the mixture was stirred for 1 h, and the reaction was quenched with 5 mL of water. The product was extracted with EtOAc (3 \times 20 mL), dried (Na₂-SO₄), and concentrated under reduced pressure. The residue was purified by chromatography (EtOAc/hexane, 2:3) to give 0.34 g (91%) of **29** as a colorless oil: $[\alpha]^{25}_{D}$ -41.1° (*c* 1.9, CHCl₃); IR 1666, 1467, 1394, 1368, 1245, 1167, 1082 cm⁻¹; ¹H NMR (C₆D₆, 70 °C) δ 0.89 (t, 3H, J = 6.6 Hz), 0.96 (s, 9H), 1.20-1.80 (m, 37H), 2.22 (d, 1H, J = 4.6 Hz), 3.78 (dd, 1H, J= 9.0, 7.0 Hz), 3.96 (br s, 1H), 4.05 (br s, 1H), 4.31 (dd, 1H, J = 11.1, 5.2 Hz), 4.69 (br s, 1H); ¹³C NMR (C₆D₆) δ 14.3, 14.8, 22.9, 23.0, 23.1, 23.3, 23.5, 25.3, 25.8, 26.1, 26.7, 28.3, 29.8, 30.09, 30.1, 30.2, 32.1, 32.3, 34.5, 38.2, (62.0) 62.3, 62.9, 63.7, (64.8) 65.2, (79.9) 80.9, 83.6, 87.9 (88.4), 94.9 (95.4), (151.9) 154.2; HR-MS [FAB, MH⁺] m/z calcd for C₂₆H₄₈NO₅ 454.3532, found 454.3517.

(2.5,3*R*,6*S*)-2-Octanoylamido-4-octadecyne-1,3,6-triol [(–)-31]. A solution of 113 mg (0.20 mmol) of 27 in 5 mL of 1 M HCl and 5 mL of dioxane was heated at 100 °C with stirring for 1 h under N_2 . The reaction mixture was cooled to rt and neutralized with 1 M NaOH (5 mL). The product was extracted with EtOAc (3 × 20 mL), and the combined organic layers were washed with brine and dried (Na₂SO₄). Removal of the solvent provided a crude sphingosine analogue as a white solid, which

was dissolved in 6 mL of dry THF. After 108 mg (0.40 mmol) of *p*-nitrophenyl octanoate was added at rt, the reaction mixture was stirred for 24 h and concentrated. Purification by flash chromatography (CHCl₃/MeOH, 9:1) afforded 71 mg (81%, two steps) of 4-alkynylceramide analogue **31** as a white solid: mp 95.2–96.2 °C; $[\alpha]^{25}_{\rm D} - 13.6^{\circ}$ (*c* 1.1, CHCl₃/MeOH, 4:1); IR 3426, 1659, 1509, 1052 cm⁻¹;¹H NMR (CDCl₃/MeOD) δ 0.88 (t, 6H, *J* = 6.5 Hz), 1.20–1.70 (m, 32H), 2.24 (t, 2H, *J* = 7.5 Hz), 3.67 (dd, 1H, *J* = 11.5, 4.7 Hz), 3.90 (dd, 1H, *J* = 11.5, 4.6 Hz), 4.06 (d, 1H, *J* = 4.7 Hz), 4.30 (m, 1H), 4.53 (dd, 1H, *J* = 4.8, 1.3 Hz); ¹³C NMR (CDCl₃/MeOD) δ 14.1, 22.7, 32.8, 25.4, 25.8, 29.1, 29.3, 29.5, 29.7, 31.8, 32.0, 36.66, 36.7, 37.6, 55.2, 61.5, 61.8, 62.8, 82.3, 87.8, 175.3; HR-MS [FAB, MNa⁺] *m*/*z* calcd for C₂₆H₄₉NO₄Na 462.3559, found 462.3552.

(2S,3R,6S)-2-Octanoylamido-(4E)-octadecene-1,3,6-triol [(+)-2]. To the blue solution prepared by addition of 50 mg (7.2 mmol) of lithium metal to 5 mL of liquid EtNH₂ was added a solution of 31 (44 mg, 0.10 mmol) in 5 mL of dry THF at -78 °C. After the mixture was stirred for 1 h, the reaction was quenched by addition of 400 mg (7.5 mmol) of NH₄Cl. After removal of EtNH₂ by a stream of N₂, the mixture was diluted with 50 mL of CHCl₃ and washed with water. The organic layer was dried (Na₂SO₄) and concentrated. Purification by column chromatography (CHCl₃/MeOH, 9:1) gave 40 mg (90%) of **2** as a white solid: mp 119.5–121.0 °C; $[\alpha]^{25}_{D}$ +5.1° (*c* 1.1, CHCl₃/MeOH, 4:1); IR 3427, 1659, 1509, 1465, 1222 cm⁻¹; ¹H NMR (CDCl₃/MeOD) δ 0.88 (t, 6H, J = 6.4 Hz), 1.20–1.70 (m, 32H), 2.21 (t, 2H, J = 7.4 Hz), 3.63 (dd, 1H, J = 10.9, 3.4 Hz), 3.84 (m, 2H), 4.06 (q, 1H, J = 6.1 Hz), 4.20 (t, 1H, J = 5.3Hz), 5.65 (dd, 1H, J = 15.5, 5.8 Hz), 5.73 (dd, 1H, J = 16.7, 6.0 Hz); ¹³C NMR (CDCl₃/MeOD) δ 14.1, 22.7, 22.8, 25.6, 25.9, 29.1, 29.4, 29.5, 29.7, 29.8, 31.8, 32.0, 36.7, 37.1, 54.7, 61.6, 71.9, 72.6, 129.5, 135.6, 174.9; HR-MS [FAB, MNa⁺] m/z calcd for C₂₆H₅₁NO₄Na 464.3716, found 464.3707.

Data for (3*S***,4***S***)-2-[(1'***E***)-1'-Tetradecenyl]-3-hydroxy-4-octanoylamidotetrahydrofuran [(+)-30]: mp 142.0– 143.0 °C; [\alpha]^{25}_{\rm D} +12.9° (***c* **0.9, CHCl₃/MeOH, 4:1); IR 1665, 1510, 1467, 1223 cm⁻¹; ¹H NMR (CDCl₃/MeOD) \delta 0.88 (t, 6H,** *J* **= 6.4 Hz), 1.20–1.70 (m, 30H), 2.08 (q, 2H,** *J* **= 6.9 Hz), 2.21 (t, 2H,** *J* **= 7.4 Hz), 3.62 (t, 1H,** *J* **= 8.2 Hz), 3.79 (br s, 3H), 4.06 (m, 2H), 4.29 (q, 1H,** *J* **= 3.0 Hz), 4.53 (m, 1H), 5.60 (dd, 1H,** *J* **= 15.4, 7.4 Hz), 5.83 (dt, 1H,** *J* **= 15.4, 8.5 Hz); ¹³C NMR (CDCl₃/MeOD) \delta 13.56, 13.6, 22.2, 22.3, 25.4, 28.6, 28.7, 28.8, 28.9, 29.2, 29.27, 29.3, 31.3, 31.6, 32.2, 36.0, 52.4, 69.4, 71.8, 83.1, 124.0, 136.4, 174.3; HR-MS [DCI, MH⁺ – H₂O]** *m/z* **calcd for C₂₆H₄₈NO₂ 406.3685, found 406.3669; MS [ESI, MH⁺]** *m/z* **calcd for C₂₆H₄₅₀NO₃ 424.3, found 424.3. The configuration at C-2 was not determined.**

(3*R*)-3-(*tert*-Butyldimethylsilyloxy)-1-pentadecyne [(+)-32]. This compound was prepared in 95% yield by using the same procedure as described for 25: $[\alpha]^{25}_{D} +20.7^{\circ}$ (*c* 0.7, CHCl₃); IR 1708, 1467, 1256, 1093, 837 cm⁻¹; ¹H NMR δ 0.10 (s, 3H), 0.13 (s, 3H), 0.89 (m, 12H), 1.20–1.40 (m, 20H), 1.65 (m, 2H), 2.34 (d, 1H, J = 2.1 Hz), 4.32 (m, 1H); ¹³C NMR δ -5.1, -4.5, 14.1, 18.2, 22.7, 25.2, 25.8, 29.3, 29.4, 29.61, 29.64, 29.71, 29.74, 32.0, 38.6, 62.8, 71.8, 85.8; MS [ESI] *m*/*z* 356.3 (MNH₄⁺).

N-*tert*-Butoxycarbonyl-(4*S*,1'*R*,4'*R*)-4-[4'-(*tert*-butyldimethylsilyloxy)-1'-hydroxy-2'-hexadecynyl]-2,2-dimethyl-1,3-oxazolidine [(-)-33]. To a solution of 1.01 g (3.0 mmol) of alkyne 32 in 15 mL of dry THF was slowly added 1.3 mL (3.2 mmol) of *n*-BuLi (a 2.5 M solution in hexanes) at -78 °C under N₂. After the mixture was stirred for 30 min at -78 °C, HMPA (1.05 mL, 6.0 mmol) was added, followed by a solution of 0.69 g (3.0 mmol) of 26 in 10 mL of dry THF. The mixture was kept at -78 °C for 2 h, and then allowed to warm to rt for 1 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution, extracted with EtOAc (3 × 30 mL), dried (MgSO₄), and concentrated under reduced pressure. *N*-Boc-1,3-oxazolidine 33 was isolated by chromatography on silica gel (hexane/EtOAc, 4:1): $[\alpha]^{25}_{D} - 4.3^{\circ}$ (*c* 1.8, CDCl₃); IR 1696, 1375, 1010 cm⁻¹; ¹H NMR (C₆D₆, 70 °C) δ 0.13 (s, 3H),

⁽³¹⁾ The 1,3-oxazolidine carbamate system exists as a pair of rotamers, the interconversion of which is enhanced at high temperature; therefore, proton NMR spectra were recorded at 70 $^\circ$ C.

⁽³²⁾ Some of the signals in the ambient-temperature ¹³C NMR spectra appear as a pair of singlets (denoted in parentheses).

0.18 (s, 3H), 0.88 (t, 3H, J = 6.1 Hz), 0.96 (s, 9H), 1.20–1.80 (m, 37H), 3.79 (t, 1H, J = 7.1 Hz), 4.00 (br s, 2H), 4.41 (t, 1H, J = 5.0 Hz), 4.70 (br s, 1H); ¹³C NMR (C₆D₆) δ –4.8, –3.9, 14.4, 18.4, 23.1, 23.4, 24.0, 25.5, 25.7, 26.1, 26.3, 28.2, 28.4, 29.7, 29.8, 30.0, 30.1, 37.0, (63.1) 63.4, 64.2 (64.6), (65.0) 65.2, (79.8) 80.8, 83.6 (83.7), 87.5 (88.0), 95.0, (151.7) 154.3; HR-MS [FAB, MNa⁺] m/z calcd for C₃₂H₆₁NO₅SiNa 590.4217, found 590.4231.

(2.S,3.R,6.R)-2-Octanoylamido-4-octadecyne-1,3,6-triol [(-)-34]. This compound was prepared in 80% yield by using the same procedure as described for 31: mp 82.5-83.5 °C; $[\alpha]^{25}_{D} - 1.56^{\circ}$ (*c* 1.8, CDCl₃); IR 3427, 1657, 1512, 1463, 1053 cm⁻¹;⁴H NMR δ 0.85 (t, 6H, J = 6.4 Hz), 1.20–1.70 (m, 32H), 2.22 (t, 2H, J = 7.5 Hz), 3.71 (dd, 1H, J = 10.9, 3.4 Hz), 4.04 (m, 2H), 4.32 (t, 1H, J = 6.5 Hz), 4.59 (d, 1H, J = 3.6 Hz), 6.65 (d, 1H, J = 7.9 Hz); ¹³C NMR δ 14.06, 14.1, 22.6, 22.7, 25.4, 25.7, 29.1, 29.3, 29.4, 29.67, 29.72, 31.7, 32.0, 36.7, 37.7, 54.9, 61.8, 62.0, 63.2, 82.5, 88.1, 174.9; HR-MS [DCI, MH⁺] m/z calcd for C₂₆H₅₀NO₄ 440.3740, found 440.3742.

(2.*S*,3*R*,6*R*)-2-Octanoylamido-(4*E*)-octadecene-1,3,6-triol [(-)-3]. This compound was prepared in 88% yield by using the same procedure as described for **2**: mp 92.0–93.0 °C; $[\alpha]^{25}_{\rm D}$ -10.0° (*c* 1.0, CHCl₃); IR 3426, 1658, 1510, 1467, 1224 cm⁻¹; ¹H NMR δ 0.88 (t, 6H, *J* = 6.4 Hz), 1.20–1.70 (m, 32H), 2.23 (t, 2H, *J* = 7.5 Hz), 3.70 (dd, 1H, *J* = 10.9, 3.4 Hz), 3.94 (m, 2H), 4.13 (q, 1H, *J* = 6.1 Hz), 4.37 (t, 1H, *J* = 4.1 Hz), 5.79 (dd, 1H, *J* = 15.5, 5.8 Hz), 5.81 (dd, 1H, *J* = 16.7, 6.0 Hz), 6.38 (d, 1H, *J* = 7.4 Hz); ¹³C NMR δ 14.1, 22.6, 22.7, 25.5, 25.7, 29.0, 29.2, 29.4, 29.6, 29.7, 31.7, 31.9, 36.8, 37.3, 54.4, 62.1, 71.9, 73.8, 129.4, 135.6, 174.2; HR-MS [FAB, MNa⁺] *m*/*z* calcd for C₂₆H₅₁NO₄Na 464.3716, found 464.3700.

Acknowledgment. This work was supported by National Institutes of Health Grant HL 16660.

Supporting Information Available: Copies of ¹H and ¹³C NMR spectra for compounds **2**, **3**, **5**, **8**, **10**, **11**, **14**, **16**, **17**, **24**, **25**, **27**, and **29–34**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO026240+